Relative Centralizers of Relative Subgroups

N. A. Vavilov*, Z. Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Let R be an associative ring with 1 and G = GL(n, R) the general linear group of degree n ≥ 3 over R. A goal of the paper is to calculate the relative centralizers of the relative elementary subgroups or the principal congruence subgroups, corresponding to an ideal A ⊴ R modulo the relative elementary subgroups or the principal congruence subgroups, corresponding to another ideal B ⊴ R. Modulo congruence subgroups, the results are essentially easy exercises in linear algebra. But modulo the elementary subgroups, they turned out to be quite tricky, and definitive answers are obtained only over commutative rings or, in some cases, only over Dedekind rings/Dedekind rings of arithmetic type.

源语言英语
页(从-至)4-14
页数11
期刊Journal of Mathematical Sciences
264
1
DOI
出版状态已出版 - 6月 2022

指纹

探究 'Relative Centralizers of Relative Subgroups' 的科研主题。它们共同构成独一无二的指纹。

引用此