TY - GEN
T1 - Relational Triple Extraction
T2 - 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
AU - Shang, Yu Ming
AU - Huang, Heyan
AU - Sun, Xin
AU - Wei, Wei
AU - Mao, Xian Ling
N1 - Publisher Copyright:
© 2022 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Extracting relational triples from unstructured text is an essential task in natural language processing and knowledge graph construction. Existing approaches usually contain two fundamental steps: (1) finding the boundary positions of head and tail entities; (2) concatenating specific tokens to form triples. However, nearly all previous methods suffer from the problem of error accumulation, i.e., the boundary recognition error of each entity in step (1) will be accumulated into the final combined triples. To solve the problem, in this paper, we introduce a fresh perspective to revisit the triple extraction task, and propose a simple but effective model, named DirectRel. Specifically, the proposed model first generates candidate entities through enumerating token sequences in a sentence, and then transforms the triple extraction task into a linking problem on a “head → tail” bipartite graph. By doing so, all triples can be directly extracted in only one step. Extensive experimental results on two widely used datasets demonstrate that the proposed model performs better than the state-of-the-art baselines.
AB - Extracting relational triples from unstructured text is an essential task in natural language processing and knowledge graph construction. Existing approaches usually contain two fundamental steps: (1) finding the boundary positions of head and tail entities; (2) concatenating specific tokens to form triples. However, nearly all previous methods suffer from the problem of error accumulation, i.e., the boundary recognition error of each entity in step (1) will be accumulated into the final combined triples. To solve the problem, in this paper, we introduce a fresh perspective to revisit the triple extraction task, and propose a simple but effective model, named DirectRel. Specifically, the proposed model first generates candidate entities through enumerating token sequences in a sentence, and then transforms the triple extraction task into a linking problem on a “head → tail” bipartite graph. By doing so, all triples can be directly extracted in only one step. Extensive experimental results on two widely used datasets demonstrate that the proposed model performs better than the state-of-the-art baselines.
UR - http://www.scopus.com/inward/record.url?scp=85137943665&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85137943665
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 4360
EP - 4366
BT - Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
A2 - De Raedt, Luc
A2 - De Raedt, Luc
PB - International Joint Conferences on Artificial Intelligence
Y2 - 23 July 2022 through 29 July 2022
ER -