Reinforcing the topic of embeddings with Theta Pure Dependence for text classification

Ning Xing, Yuexian Hou*, Peng Zhang, Wenjie Li, Dawei Song

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

For sentiment classification, it is often recognized that embedding based on distributional hypothesis is weak in capturing sentiment contrast-contrasting words may have similar local context. Based on broader context, we propose to incorporate Theta Pure Dependence (TPD) into the Paragraph Vector method to reinforce topical and sentimental information. TPD has a theoretical guarantee that the word dependency is pure, i.e., the dependence pattern has the integral meaning whose underlying distribution can not be conditionally factorized. Our method outperforms the state-of-the-art performance on text classification tasks.

源语言英语
主期刊名Conference Proceedings - EMNLP 2015
主期刊副标题Conference on Empirical Methods in Natural Language Processing
出版商Association for Computational Linguistics (ACL)
2551-2556
页数6
ISBN(电子版)9781941643327
DOI
出版状态已出版 - 2015
已对外发布
活动Conference on Empirical Methods in Natural Language Processing, EMNLP 2015 - Lisbon, 葡萄牙
期限: 17 9月 201521 9月 2015

出版系列

姓名Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing

会议

会议Conference on Empirical Methods in Natural Language Processing, EMNLP 2015
国家/地区葡萄牙
Lisbon
时期17/09/1521/09/15

指纹

探究 'Reinforcing the topic of embeddings with Theta Pure Dependence for text classification' 的科研主题。它们共同构成独一无二的指纹。

引用此

Xing, N., Hou, Y., Zhang, P., Li, W., & Song, D. (2015). Reinforcing the topic of embeddings with Theta Pure Dependence for text classification. 在 Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing (页码 2551-2556). (Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/d15-1305