TY - GEN
T1 - Reimagining China-US Relations Prediction
T2 - 30th International Conference on Neural Information Processing, ICONIP 2023
AU - Zhou, Rui
AU - Hao, Jialin
AU - Zou, Ying
AU - Zhu, Yushi
AU - Zhang, Chi
AU - Jin, Fusheng
N1 - Publisher Copyright:
© 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2024
Y1 - 2024
N2 - Statistical models and data driven models have achieved remarkable results in international relation forecasting. However, most of these models have several common drawbacks, including (i) rely on large amounts of expert knowledge, limiting the objectivity, applicability, usability, interpretability and sustainability of models, (ii) can only use structured unimodal data or cannot make full use of multimodal data. To address these two problems, we proposed a Knowledge-Driven neural network architecture that conducts Sample Convolution and Interaction, named KDSCINet, for China-US relation forecasting. Firstly, we filter events pertaining to China-US relations from the GDELT database. Then, we extract text descriptions and images from news articles and utilize the fine-tuned pre-trained model MKGformer to obtain embeddings. Finally we connect textual and image embeddings of the event with the structured event value in GDELT database through multi-head attention mechanism to generate time series data, which is then feed into KDSCINet for China-US relation forecasting. Our approach enhances prediction accuracy by establishing a knowledge-driven temporal forecasting model that combines structured data, textual data and image data. Experiments demonstrate that KDSCINet can (i) outperform state-of-the-art methods on time series forecasting problem in the area of international relation forecasting, (ii) improving forecasting performance through the use of multimodal knowledge.
AB - Statistical models and data driven models have achieved remarkable results in international relation forecasting. However, most of these models have several common drawbacks, including (i) rely on large amounts of expert knowledge, limiting the objectivity, applicability, usability, interpretability and sustainability of models, (ii) can only use structured unimodal data or cannot make full use of multimodal data. To address these two problems, we proposed a Knowledge-Driven neural network architecture that conducts Sample Convolution and Interaction, named KDSCINet, for China-US relation forecasting. Firstly, we filter events pertaining to China-US relations from the GDELT database. Then, we extract text descriptions and images from news articles and utilize the fine-tuned pre-trained model MKGformer to obtain embeddings. Finally we connect textual and image embeddings of the event with the structured event value in GDELT database through multi-head attention mechanism to generate time series data, which is then feed into KDSCINet for China-US relation forecasting. Our approach enhances prediction accuracy by establishing a knowledge-driven temporal forecasting model that combines structured data, textual data and image data. Experiments demonstrate that KDSCINet can (i) outperform state-of-the-art methods on time series forecasting problem in the area of international relation forecasting, (ii) improving forecasting performance through the use of multimodal knowledge.
KW - China-US relation
KW - Knowledge-driven
KW - Multimodal data
KW - Time-series forecasting
UR - http://www.scopus.com/inward/record.url?scp=85178603506&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-8082-6_25
DO - 10.1007/978-981-99-8082-6_25
M3 - Conference contribution
AN - SCOPUS:85178603506
SN - 9789819980819
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 317
EP - 331
BT - Neural Information Processing - 30th International Conference, ICONIP 2023, Proceedings
A2 - Luo, Biao
A2 - Cheng, Long
A2 - Wu, Zheng-Guang
A2 - Li, Hongyi
A2 - Li, Chaojie
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 20 November 2023 through 23 November 2023
ER -