Regularity of Harmonic functions for a class of singular stable-like processes

Richard F. Bass, Zhen Qing Chen*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 30
  • Captures
    • Readers: 2
see details

摘要

We consider the system of stochastic differential equations dXt = A(Xt-)dZt, where Zt1, . . . , Ztd are independent one-dimensional symmetric stable processes of order α, and the matrix-valued function A is bounded, continuous and everywhere non-degenerate. We show that bounded harmonic functions associated with X are Hölder continuous, but a Harnack inequality need not hold. The Lévy measure associated with the vector-valued process Z is highly singular.

源语言英语
页(从-至)489-503
页数15
期刊Mathematische Zeitschrift
266
3
DOI
出版状态已出版 - 2010
已对外发布

指纹

探究 'Regularity of Harmonic functions for a class of singular stable-like processes' 的科研主题。它们共同构成独一无二的指纹。

引用此

Bass, R. F., & Chen, Z. Q. (2010). Regularity of Harmonic functions for a class of singular stable-like processes. Mathematische Zeitschrift, 266(3), 489-503. https://doi.org/10.1007/s00209-009-0581-0