TY - GEN
T1 - Recurrent Spike-based Image Restoration under General Illumination
AU - Zhu, Lin
AU - Zheng, Yunlong
AU - Geng, Mengyue
AU - Wang, Lizhi
AU - Huang, Hua
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/10/26
Y1 - 2023/10/26
N2 - Spike camera is a new type of bio-inspired vision sensor that records light intensity in the form of a spike array with high temporal resolution (20,000 Hz). This new paradigm of vision sensor offers significant advantages for many vision tasks such as high speed image reconstruction. However, existing spike-based approaches typically assume that the scenes are with sufficient light intensity, which is usually unavailable in many real-world scenarios such as rainy days or dusk scenes. To unlock more spike-based application scenarios, we propose a Recurrent Spike-based Image Restoration (RSIR) network, which is the first work towards restoring clear images from spike arrays under general illumination. Specifically, to accurately describe the noise distribution under different illuminations, we build a physical-based spike noise model according to the sampling process of the spike camera. Based on the noise model, we design our RSIR network which consists of an adaptive spike transformation module, a recurrent temporal feature fusion module, and a frequency-based spike denoising module. Our RSIR can process the spike array in a recursive manner to ensure that the spike temporal information is well utilized. In the training process, we generate the simulated spike data based on our noise model to train our network. Extensive experiments on real-world datasets with different illuminations demonstrate the effectiveness of the proposed network. The code and dataset are released at https://github.com/BIT-Vision/RSIR.
AB - Spike camera is a new type of bio-inspired vision sensor that records light intensity in the form of a spike array with high temporal resolution (20,000 Hz). This new paradigm of vision sensor offers significant advantages for many vision tasks such as high speed image reconstruction. However, existing spike-based approaches typically assume that the scenes are with sufficient light intensity, which is usually unavailable in many real-world scenarios such as rainy days or dusk scenes. To unlock more spike-based application scenarios, we propose a Recurrent Spike-based Image Restoration (RSIR) network, which is the first work towards restoring clear images from spike arrays under general illumination. Specifically, to accurately describe the noise distribution under different illuminations, we build a physical-based spike noise model according to the sampling process of the spike camera. Based on the noise model, we design our RSIR network which consists of an adaptive spike transformation module, a recurrent temporal feature fusion module, and a frequency-based spike denoising module. Our RSIR can process the spike array in a recursive manner to ensure that the spike temporal information is well utilized. In the training process, we generate the simulated spike data based on our noise model to train our network. Extensive experiments on real-world datasets with different illuminations demonstrate the effectiveness of the proposed network. The code and dataset are released at https://github.com/BIT-Vision/RSIR.
KW - image restoration
KW - neuromorphic camera
KW - spike noise model
UR - http://www.scopus.com/inward/record.url?scp=85179549083&partnerID=8YFLogxK
U2 - 10.1145/3581783.3611829
DO - 10.1145/3581783.3611829
M3 - Conference contribution
AN - SCOPUS:85179549083
T3 - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
SP - 8251
EP - 8260
BT - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 31st ACM International Conference on Multimedia, MM 2023
Y2 - 29 October 2023 through 3 November 2023
ER -