Recommending refactoring solutions based on traceability and code metrics

Ally S. Nyamawe, Hui Liu*, Zhendong Niu, Wentao Wang, Nan Niu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

23 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 23
  • Captures
    • Readers: 41
see details

摘要

Software refactoring has been extensively used to rectify the design flaws and improve software quality without affecting its observable behaviors. For a given code smell, it is common that there exist multiple refactoring solutions. However, it is challenging for developers to select the best one from such potential solutions. Consequently, a number of approaches have been proposed to facilitate the selection. Such approaches compare and select among alternative refactoring solutions based on their impact on metrics of source code. However, their impact on the traceability between source code and requirements is ignored although the importance of such traceability has been well recognized. To this end, we select among alternative refactoring solutions according to how they improve the traceability as well as source code design. To quantify the quality of traceability and source code design we leverage the use of entropy-based and traditional coupling and cohesion metrics respectively. We virtually apply alternative refactoring solutions and measure their effect on the traceability and source code design. The one leading to greatest improvement is recommended. The proposed approach has been evaluated on a well-known data set. The evaluation results suggest that on up to 71% of the cases, developers prefer our recommendation to the traditional recommendation based on code metrics.

源语言英语
文章编号8456513
页(从-至)49460-49475
页数16
期刊IEEE Access
6
DOI
出版状态已出版 - 5 9月 2018

指纹

探究 'Recommending refactoring solutions based on traceability and code metrics' 的科研主题。它们共同构成独一无二的指纹。

引用此

Nyamawe, A. S., Liu, H., Niu, Z., Wang, W., & Niu, N. (2018). Recommending refactoring solutions based on traceability and code metrics. IEEE Access, 6, 49460-49475. 文章 8456513. https://doi.org/10.1109/ACCESS.2018.2868990