Recent progress in optimal design of superhydrophobic surfaces

Mengyu Zhu, Liyang Huang, Bo Zhang*, Shan Chen, Hongguang Zhang, Xianren Zhang*, Dawei Li, Yin Yao, Zhilong Peng, Shaohua Chen, Dapeng Cao*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

Superhydrophobic surfaces have received tremendous attention due to their extraordinary physical characteristics and potential applications in various fields. However, the design of robust superhydrophobic surfaces showing both low adhesion and high antiwetting remains a great challenge. Here, we first introduce some important parameters for the characterization of the adhesion property of superhydrophobic surfaces and its physical meaning, including the apparent contact angle, rolling angle, and hysteresis angle. Then, we summarize the antiwetting property of superhydrophobic surfaces through thermodynamic and dynamic methods, and we point out the contradiction between low adhesion and high antiwetting of superhydrophobic surfaces. To achieve a trade-off between low adhesion and high antiwetting in superhydrophobic materials, we also review the recent progress made in regard to the optimal design of superhydrophobic surfaces by using chemical modification and physical design of microstructures. Finally, we review the application of superhydrophobic surfaces for drag reduction, with a few discussions and outlook. This Research Update is expected to provide useful guidance to rationally design superhydrophobic materials with low adhesion and high antiwetting properties and, thus, speed up the development of superhydrophobic materials or anti-icing materials.

源语言英语
文章编号110701
期刊APL Materials
10
11
DOI
出版状态已出版 - 1 11月 2022

指纹

探究 'Recent progress in optimal design of superhydrophobic surfaces' 的科研主题。它们共同构成独一无二的指纹。

引用此