Real-time jellyfish classification and detection algorithm based on improved YOLOv4-tiny and improved underwater image enhancement algorithm

Meijing Gao*, Shiyu Li, Kunda Wang, Yang Bai, Yan Ding, Bozhi Zhang, Ning Guan, Ping Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

The outbreak of jellyfish blooms poses a serious threat to human life and marine ecology. Therefore, jellyfish detection techniques have earned great interest. This paper investigates the jellyfish detection and classification algorithm based on optical images and deep learning theory. Firstly, we create a dataset comprising 11,926 images. A MSRCR underwater image enhancement algorithm with fusion is proposed. Finally, an improved YOLOv4-tiny algorithm is proposed by incorporating a CBMA module and optimizing the training method. The results demonstrate that the detection accuracy of the improved algorithm can reach 95.01%, the detection speed is 223FPS, both of which are better than the compared algorithms such as YOLOV4. In summary, our method can accurately and quickly detect jellyfish. The research in this paper lays the foundation for the development of an underwater jellyfish real-time monitoring system.

源语言英语
文章编号12989
期刊Scientific Reports
13
1
DOI
出版状态已出版 - 12月 2023

指纹

探究 'Real-time jellyfish classification and detection algorithm based on improved YOLOv4-tiny and improved underwater image enhancement algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此