Real-Time Autonomous Localization in Multi-Robot Scene

Yifan Mao, Zhihao Sun, Xuan Zhou, Fang Deng*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In the multi-robot scene, the rapidly changing environment makes it hard for robots to localize. ICP (Iterative Closest Point) is a robust point cloud matching algorithm that can be used for real-time autonomous localization. However, the occlusion of lidar by other robots or humans leads to the failure of traditional ICP localization methods. We propose a novel real-time autonomous localization method combining the improved ICP method with the lidar-odometry mixed localization mode. This method can realize high-precision and fast real-time autonomous localization in complex environments. We provide experimental results and comparisons to other well-known methods to show the competitiveness of the proposed method.

源语言英语
主期刊名2023 42nd Chinese Control Conference, CCC 2023
出版商IEEE Computer Society
4207-4212
页数6
ISBN(电子版)9789887581543
DOI
出版状态已出版 - 2023
活动42nd Chinese Control Conference, CCC 2023 - Tianjin, 中国
期限: 24 7月 202326 7月 2023

出版系列

姓名Chinese Control Conference, CCC
2023-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议42nd Chinese Control Conference, CCC 2023
国家/地区中国
Tianjin
时期24/07/2326/07/23

指纹

探究 'Real-Time Autonomous Localization in Multi-Robot Scene' 的科研主题。它们共同构成独一无二的指纹。

引用此