摘要
The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity. Herein, nickel single-site catalysts (SSCs) with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed (denoted as Ni-PxNy, x = 1, 2 and y = 3, 2). In CO2 reduction reaction (CO2RR), the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification. Besides, Ni-P1N3 performed the highest CO Faradaic efficiency (FECO) of 85.0%–98.0% over a wide potential range of −0.65 to −0.95 V (vs. the reversible hydrogen electrode (RHE)). Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO2 intermediate adsorption/desorption, thereby accelerating the reaction kinetics and boosting CO2RR activity. This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance, targetting to CO2RR applications. [Figure not available: see fulltext.]
源语言 | 英语 |
---|---|
页(从-至) | 2170-2176 |
页数 | 7 |
期刊 | Nano Research |
卷 | 16 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 2月 2023 |