Random sampling fuzzy c-means clustering and recursive least square based fuzzy identification

Pingli Lu*, Ying Yang, Wenbo Ma

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

In this paper, a new method of fuzzy identification based on fuzzy clustering and recursive least square is proposed. The membership degree of each given pattern is calculated by using fast fuzzy clustering algorithm and the consequent parameters are identified by recursive least square. It is shown that the computer CPU time has been greatly saved compared with fuzzy c-means clustering method. A numerical example is given at the end of the paper to demonstrate the applicability and validity of the proposed method.

源语言英语
主期刊名Proceedings of the 2006 American Control Conference
5049-5052
页数4
出版状态已出版 - 2006
已对外发布
活动2006 American Control Conference - Minneapolis, MN, 美国
期限: 14 6月 200616 6月 2006

出版系列

姓名Proceedings of the American Control Conference
2006
ISSN(印刷版)0743-1619

会议

会议2006 American Control Conference
国家/地区美国
Minneapolis, MN
时期14/06/0616/06/06

指纹

探究 'Random sampling fuzzy c-means clustering and recursive least square based fuzzy identification' 的科研主题。它们共同构成独一无二的指纹。

引用此