Quasi-Sure Convergence Rate of Euler Scheme for Stochastic Differential Equations

Wenliang Huang*, Xicheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Let Xt(x) be the solution of stochastic differential equations with smooth and bounded derivatives coefficients. Let Xnt(x) be the Euler discretization scheme of SDEs with step 2-n. In this note, we prove that for any R > 0 and γ ∈ (0,1/2), supt∈[0,1],|x|≤R|Xtn(x,ω)-Xt(x,ω)|≤ξR,γ(ω)2 nγ,n≥1,q.e.,where ξR,γ(ω) is quasi-everywhere finite.

源语言英语
页(从-至)65-72
页数8
期刊Acta Mathematica Scientia
34
1
DOI
出版状态已出版 - 1月 2014
已对外发布

指纹

探究 'Quasi-Sure Convergence Rate of Euler Scheme for Stochastic Differential Equations' 的科研主题。它们共同构成独一无二的指纹。

引用此