Quantifying Controllability for Nonlinear State-Dependent Riccati Equation Control

Yuhui Hu, Konstantin Avenirovich Neusypin, Kai Shen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Degree of controllability (DOC) characterizes how controllable a given system is and thus quantifying controllability can facilitate the control system synthesis and optimization. In this paper, the controllability of nonlinear input-affine systems and the state-dependent-coefficient (SDC) factorization are first reviewed. A computational procedure based on the scalarization of the controllability Gramian is proposed to quantify the controllability of both system and state variables of the SDC factored system for state-dependent Riccati equation (SDRE) control. The simulation of coordinate satellite control is carried out to validate the effectiveness of the proposed DOC criterion. It is shown that SDC-parameterized models with higher DOC can promote the performance of the SDRE control algorithm.

源语言英语
主期刊名Proceedings - 2022 International Russian Automation Conference, RusAutoCon 2022
出版商Institute of Electrical and Electronics Engineers Inc.
80-85
页数6
ISBN(电子版)9781665466554
DOI
出版状态已出版 - 2022
活动2022 International Russian Automation Conference, RusAutoCon 2022 - Sochi, 俄罗斯联邦
期限: 4 9月 202210 9月 2022

出版系列

姓名Proceedings - 2022 International Russian Automation Conference, RusAutoCon 2022

会议

会议2022 International Russian Automation Conference, RusAutoCon 2022
国家/地区俄罗斯联邦
Sochi
时期4/09/2210/09/22

指纹

探究 'Quantifying Controllability for Nonlinear State-Dependent Riccati Equation Control' 的科研主题。它们共同构成独一无二的指纹。

引用此