PVDF/Palygorskite Nanowire Composite Electrolyte for 4 v Rechargeable Lithium Batteries with High Energy Density

Pengcheng Yao, Bin Zhu, Haowei Zhai, Xiangbiao Liao, Yuxiang Zhu, Weiheng Xu, Qian Cheng, Charles Jayyosi, Zheng Li, Jia Zhu, Kristin M. Myers, Xi Chen, Yuan Yang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

247 引用 (Scopus)

摘要

Solid electrolytes are crucial for the development of solid state batteries. Among different types of solid electrolytes, poly(ethylene oxide) (PEO)-based polymer electrolytes have attracted extensive attention owing to their excellent flexibility and easiness for processing. However, their relatively low ionic conductivities and electrochemical instability above 4 V limit their applications in batteries with high energy density. Herein, we prepared poly(vinylidene fluoride) (PVDF) polymer electrolytes with an organic plasticizer, which possesses compatibility with 4 V cathode and high ionic conductivity (1.2 × 10-4 S/cm) at room temperature. We also revealed the importance of plasticizer content to the ionic conductivity. To address weak mechanical strength of the PVDF electrolyte with plasticizer, we introduced palygorskite ((Mg,Al)2Si4O10(OH)) nanowires as a new ceramic filler to form composite solid electrolytes (CPE), which greatly enhances both stiffness and toughness of PVDF-based polymer electrolyte. With 5 wt % of palygorskite nanowires, not only does the elastic modulus of PVDF CPE increase from 9.0 to 96 MPa but also its yield stress is enhanced by 200%. Moreover, numerical modeling uncovers that the strong nanowire-polymer interaction and cross-linking network of nanowires are responsible for such significant enhancement in mechanically robustness. The addition of 5% palygorskite nanowires also enhances transference number of Li+ from 0.21 to 0.54 due to interaction between palygorskite and ClO4 - ions. We further demonstrate full cells based on Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) cathode, PVDF/palygorskite CPE, and lithium anode, which can be cycled over 200 times at 0.3 C, with 97% capacity retention. Moreover, the PVDF matrix is much less flammable than PEO electrolytes. Our work illustrates that the PVDF/palygorskite CPE is a promising electrolyte for solid state batteries.

源语言英语
页(从-至)6113-6120
页数8
期刊Nano Letters
18
10
DOI
出版状态已出版 - 10 10月 2018
已对外发布

指纹

探究 'PVDF/Palygorskite Nanowire Composite Electrolyte for 4 v Rechargeable Lithium Batteries with High Energy Density' 的科研主题。它们共同构成独一无二的指纹。

引用此