TY - JOUR
T1 - Pushing the Limits of Oxygen Balance in 1,3,4-Oxadiazoles
AU - Yu, Qiong
AU - Yin, Ping
AU - Zhang, Jiaheng
AU - He, Chunlin
AU - Imler, Gregory H.
AU - Parrish, Damon A.
AU - Shreeve, Jean'Ne M.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/7/5
Y1 - 2017/7/5
N2 - Gem-trinitromethyl groups were introduced into a 1,3,4-oxadiazole ring to give the first example of a bifunctionalized single five-membered ring with six nitro groups. 2,5-Bis(trinitromethyl)-1,3,4-oxadiazole (12) has a high calculated crystal density of 2.007 g cm-3 at 150 K (1.941 g cm-3 at 293 K) and a very high positive oxygen balance (39.12%), which makes it a strong candidate as a high energy dense oxidizer. The dihydroxylammonium and dihydrazinium salts of bis(trinitromethyl)-1,3,4-oxadiazole (5 and 6) exhibit excellent calculated detonation properties (5, vD = 9266 m s-1, P = 38.9 GPa; 6, vD = 8900 m s-1, P = 36.3 GPa) and acceptable impact sensitivities (5 20 J, 6 19 J), which are superior to those of RDX (7.4 J) and HMX (7.4 J). Such attractive features support the application potential of the gem-polynitromethyl group in the design of advanced energetic materials. Surprisingly, 2,5-bis(trinitromethyl)-1,3,4-oxadiazole (12) is more thermally stable and less sensitive than its bis(dinitromethyl) analogue, 8.
AB - Gem-trinitromethyl groups were introduced into a 1,3,4-oxadiazole ring to give the first example of a bifunctionalized single five-membered ring with six nitro groups. 2,5-Bis(trinitromethyl)-1,3,4-oxadiazole (12) has a high calculated crystal density of 2.007 g cm-3 at 150 K (1.941 g cm-3 at 293 K) and a very high positive oxygen balance (39.12%), which makes it a strong candidate as a high energy dense oxidizer. The dihydroxylammonium and dihydrazinium salts of bis(trinitromethyl)-1,3,4-oxadiazole (5 and 6) exhibit excellent calculated detonation properties (5, vD = 9266 m s-1, P = 38.9 GPa; 6, vD = 8900 m s-1, P = 36.3 GPa) and acceptable impact sensitivities (5 20 J, 6 19 J), which are superior to those of RDX (7.4 J) and HMX (7.4 J). Such attractive features support the application potential of the gem-polynitromethyl group in the design of advanced energetic materials. Surprisingly, 2,5-bis(trinitromethyl)-1,3,4-oxadiazole (12) is more thermally stable and less sensitive than its bis(dinitromethyl) analogue, 8.
UR - http://www.scopus.com/inward/record.url?scp=85022101679&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b05158
DO - 10.1021/jacs.7b05158
M3 - Article
C2 - 28628311
AN - SCOPUS:85022101679
SN - 0002-7863
VL - 139
SP - 8816
EP - 8819
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 26
ER -