TY - JOUR
T1 - Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading
AU - Fang, Dai Ning
AU - Lu, Wei
AU - Hwang, Keh Chih
PY - 1999
Y1 - 1999
N2 - In order to study the basic properties of pseudoelasticity of a CuAlNi single crystal, an investigation was carried out to observe and analyze the orientation dependence of the stress-induced martensitic transformation. The transformation is the β1 to β′1 stress-induced transformation in a Cu-13.7 pct Al-4.18 pct Ni (wt pct) alloy. From the uniaxial tension of three groups of differently oriented flat specimens, we obtained a series of stress-strain curves. In addition, the micrograph of martensitic evolution was observed by utilizing a long-focus microscope. It is found that martensite appears in the shape of bands or thin plates on the surface of the specimen. The formation of martensite is a very quick process, and martensite 'jumps' out until the specimen is completely transformed into a single variant. The experimental results are analyzed and compared to a constitutive model proposed recently. It is found that the constitutive model cannot describe transformation hardening, since the model ignores the surface-energy change. Nevertheless, the proposed constitutive model cannot only precisely predict the forward and reverse transformation, but can also characterize the stress-strain hysteresis behavior during pseudoelastic deformation under uniaxial tension loading.
AB - In order to study the basic properties of pseudoelasticity of a CuAlNi single crystal, an investigation was carried out to observe and analyze the orientation dependence of the stress-induced martensitic transformation. The transformation is the β1 to β′1 stress-induced transformation in a Cu-13.7 pct Al-4.18 pct Ni (wt pct) alloy. From the uniaxial tension of three groups of differently oriented flat specimens, we obtained a series of stress-strain curves. In addition, the micrograph of martensitic evolution was observed by utilizing a long-focus microscope. It is found that martensite appears in the shape of bands or thin plates on the surface of the specimen. The formation of martensite is a very quick process, and martensite 'jumps' out until the specimen is completely transformed into a single variant. The experimental results are analyzed and compared to a constitutive model proposed recently. It is found that the constitutive model cannot describe transformation hardening, since the model ignores the surface-energy change. Nevertheless, the proposed constitutive model cannot only precisely predict the forward and reverse transformation, but can also characterize the stress-strain hysteresis behavior during pseudoelastic deformation under uniaxial tension loading.
UR - http://www.scopus.com/inward/record.url?scp=0032592549&partnerID=8YFLogxK
U2 - 10.1007/s11661-999-0004-1
DO - 10.1007/s11661-999-0004-1
M3 - Article
AN - SCOPUS:0032592549
SN - 1073-5623
VL - 30
SP - 1933
EP - 1943
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 8
ER -