Propagation of regularity in Lp -spaces for Kolmogorov-type hypoelliptic operators

Zhen Qing Chen*, Xicheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

Consider the following Kolmogorov-type hypoelliptic operator Lt:=∑j=2nxj·∇xj-1+tr(at·∇xn2)on Rnd, where n⩾ 2 , d⩾ 1 , x=(x1,…,xn)∈(Rd)n=Rnd and at is a time-dependent constant symmetric d× d-matrix that is uniformly elliptic and bounded. Let { Ts , t; t⩾ s} be the time-dependent semigroup associated with Lt; that is, ∂sTs , tf= - LsTs , tf. For any p∈ (1 , ∞) , we show that there is a constant C= C(p, n, d) > 0 such that for any f(t, x) ∈ Lp(R× Rnd) = Lp(R1 + n d) and every λ⩾ 0 , ∥Δxj1/(1+2(n-j))∫0∞e-λtTs,t+sf(t+s,x)dt∥p⩽C‖f‖p,j=1,…,n,where ‖ · ‖ p is the usual Lp-norm in Lp(R× Rnd; d s× d x). To show this type of estimates, we first study the propagation of regularity in L2-space from variable xn to xj, 1 ⩽ j⩽ n- 1 , for the solution of the transport equation ∂tu+∑j=2nxj·∇xj-1u=f.

源语言英语
页(从-至)1041-1069
页数29
期刊Journal of Evolution Equations
19
4
DOI
出版状态已出版 - 1 12月 2019
已对外发布

指纹

探究 'Propagation of regularity in Lp -spaces for Kolmogorov-type hypoelliptic operators' 的科研主题。它们共同构成独一无二的指纹。

引用此