摘要
The commonly employed formamidinium (FA)-containing perovskite solar cells (PSCs) exhibit a severe phase instability problem, thereby limiting their commercial applications. Here, both phase stability and energy efficiency of FA-based PSCs were improved by treating the perovskite surface with pyrrolidinium hydroiodide (PyI) salts, resulting in a 1D perovskite structure (PyPbI3), stacked on the original 3D perovskite. By employing in situ XRD measurements, we revealed that the temperature-dependent phase transition activation barrier was enhanced after forming the 1D/3D structure, resulting in a prolonged transition time by 30-40-fold. From the first-principle calculations, we found the thermodynamic energy difference between two phases reduced from -0.16 to -0.04 eV after the stacking of 1D PyPbI3, offering additional lifetime improvement. Moreover, the champion 1D/3D bilayer PSC exhibits a boosted power conversion efficiency of 19.62%, versus 18.21% of the control. Such 1D/3D bilayer structure may be employed in PSCs to enhance their phase stability and photovoltaic performance.
源语言 | 英语 |
---|---|
页(从-至) | 3864-3871 |
页数 | 8 |
期刊 | Nano Letters |
卷 | 20 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 13 5月 2020 |