摘要
Quasi-2D (Q-2D) perovskites are promising materials applied in light-emitting diodes (LEDs) due to their high exciton binding energy and quantum confinement effects. However, Q-2D perovskites feature a multiphase structure with abundant grain boundaries and interfaces, leading to nonradiative loss during the energy-transfer process. Here, a more efficient energy transfer in Q-2D perovskites is achieved by manipulating the crystallization kinetics of different-n phases. A series of alkali-metal bromides is utilized to manipulate the nucleation and growth of Q-2D perovskites, which is likely associated with the Coulomb interaction between alkali-metal ions and the negatively charged PbBr64– frames. The incorporation of K+ is found to restrict the nucleation of high-n phases and allows the subsequent growth of low-n phases, contributing to a spatially more homogeneous distribution of different-n phases and promoted energy transfer. As a result, highly efficient green Q-2D perovskites LEDs with a champion EQE of 18.15% and a maximum brightness of 25 800 cd m–2 are achieved. The findings affirm a novel method to optimize the performance of Q-2D perovskite LEDs.
源语言 | 英语 |
---|---|
文章编号 | 2102246 |
期刊 | Advanced Materials |
卷 | 33 |
期 | 40 |
DOI | |
出版状态 | 已出版 - 7 10月 2021 |