Prognostics and health management of bearings based on logarithmic linear recursive least-squares and recursive maximum likelihood estimation

Xiongjun Liu, Ping Song*, Cheng Yang, Chuangbo Hao, Wenjia Peng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

66 引用 (Scopus)

摘要

Prognostics and health management allows us to predict the remaining useful life (RUL) of machinery, which is important in reducing maintenance costs and downtime, and even preventing casualties. Bearing faults account for a large proportion of machine faults. To predict the RUL of bearings, health indicators that represent the degeneration state are extracted based on the Hilbert-Huang transform and selected according to Spearman's coefficient. A model-based particle filter method is then used to track the degradation state. The unknown parameters in the nonlinear system are updated by a new method of logarithmic linear recursive least squares. A recursive maximum likelihood estimation algorithm is introduced to learn the noise in the system, and an innovative parameter fusion technique based on normalized partial derivative weights is used. Finally, the RUL of the bearings is predicted. The proposed method is validated using data from the test platform PRONOSTIA.

源语言英语
文章编号2733469
页(从-至)1549-1558
页数10
期刊IEEE Transactions on Industrial Electronics
65
2
DOI
出版状态已出版 - 29 7月 2017

指纹

探究 'Prognostics and health management of bearings based on logarithmic linear recursive least-squares and recursive maximum likelihood estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此