TY - GEN
T1 - Privacy-preserving crowd-guided AI decision-making in ethical dilemmas
AU - Wang, Teng
AU - Liu, Jinyan
AU - Zhao, Jun
AU - Yang, Xinyu
AU - Shi, Shuyu
AU - Yu, Han
AU - Ren, Xuebin
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/11/3
Y1 - 2019/11/3
N2 - With the rapid development of artificial intelligence (AI), ethical issues surrounding AI have attracted increasing attention. In particular, autonomous vehicles may face moral dilemmas in accident scenarios, such as staying the course resulting in hurting pedestrians or swerving leading to hurting passengers. To investigate such ethical dilemmas, recent studies have adopted preference aggregation, in which each voter expresses her/his preferences over decisions for the possible ethical dilemma scenarios, and a centralized system aggregates these preferences to obtain the winning decision. Although a useful methodology for building ethical AI systems, such an approach can potentially violate the privacy of voters since moral preferences are sensitive information and their disclosure can be exploited by malicious parties resulting in negative consequences. In this paper, we report a first-of-its-kind privacy-preserving crowd-guided AI decision-making approach in ethical dilemmas. We adopt the formal and popular notion of differential privacy to quantify privacy, and consider four granularities of privacy protection by taking voter-/record-level privacy protection and centralized/distributed perturbation into account, resulting in four approaches VLCP, RLCP, VLDP, and RLDP, respectively. Moreover, we propose different algorithms to achieve these privacy protection granularities, while retaining the accuracy of the learned moral preference model. Specifically, VLCP and RLCP are implemented with the data aggregator setting a universal privacy parameter and perturbing the averaged moral preference to protect the privacy of voters' data. VLDP and RLDP are implemented in such a way that each voter perturbs her/his local moral preference with a personalized privacy parameter. Extensive experiments based on both synthetic data and real-world data of voters' moral decisions demonstrate that the proposed approaches achieve high accuracy of preference aggregation while protecting individual voter's privacy.
AB - With the rapid development of artificial intelligence (AI), ethical issues surrounding AI have attracted increasing attention. In particular, autonomous vehicles may face moral dilemmas in accident scenarios, such as staying the course resulting in hurting pedestrians or swerving leading to hurting passengers. To investigate such ethical dilemmas, recent studies have adopted preference aggregation, in which each voter expresses her/his preferences over decisions for the possible ethical dilemma scenarios, and a centralized system aggregates these preferences to obtain the winning decision. Although a useful methodology for building ethical AI systems, such an approach can potentially violate the privacy of voters since moral preferences are sensitive information and their disclosure can be exploited by malicious parties resulting in negative consequences. In this paper, we report a first-of-its-kind privacy-preserving crowd-guided AI decision-making approach in ethical dilemmas. We adopt the formal and popular notion of differential privacy to quantify privacy, and consider four granularities of privacy protection by taking voter-/record-level privacy protection and centralized/distributed perturbation into account, resulting in four approaches VLCP, RLCP, VLDP, and RLDP, respectively. Moreover, we propose different algorithms to achieve these privacy protection granularities, while retaining the accuracy of the learned moral preference model. Specifically, VLCP and RLCP are implemented with the data aggregator setting a universal privacy parameter and perturbing the averaged moral preference to protect the privacy of voters' data. VLDP and RLDP are implemented in such a way that each voter perturbs her/his local moral preference with a personalized privacy parameter. Extensive experiments based on both synthetic data and real-world data of voters' moral decisions demonstrate that the proposed approaches achieve high accuracy of preference aggregation while protecting individual voter's privacy.
KW - Artificial intelligence
KW - Differential privacy
KW - Ethical decision making
UR - http://www.scopus.com/inward/record.url?scp=85075448584&partnerID=8YFLogxK
U2 - 10.1145/3357384.3357954
DO - 10.1145/3357384.3357954
M3 - Conference contribution
AN - SCOPUS:85075448584
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1311
EP - 1320
BT - CIKM 2019 - Proceedings of the 28th ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 28th ACM International Conference on Information and Knowledge Management, CIKM 2019
Y2 - 3 November 2019 through 7 November 2019
ER -