Pressure load characteristics of nonideal explosives in a simulation cabin

Chuan Hao Wang, Shu Shan Wang*, Jing Xiao Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

In this study, an aluminum-containing charge was exploded in an enclosed simulation cabin to explore the characteristics of two types of damaging pressure loads formed by internal explosions: the first incident shock wave and the quasistatic pressure. A high-frequency piezoelectric sensor was used to measure the first incident shock wave and a low-frequency piezoresistive sensor was used to measure the quasistatic pressure. After obtaining effective experimental data, the experimental results were compared with the values obtained by the classical calculation model. The results show that the pressure loads generated by the internal explosions from the ideal explosive and the aluminum-containing explosive share similar load characteristics, given the same mass and benchmark explosive. The difference between the two explosives primarily lies in the amplitude of the load parameters. The aluminum-containing explosive has lower first incident shock wave and higher quasistatic pressure than that of the ideal explosive. For the peak overpressure of the first incident shock wave, the explosion shock wave load parameters of the aluminum-containing explosive, which are calculated based on the explosion heat theory, are higher than the measured values. The peak quasistatic overpressure is directly related to the total energy released by the explosion; however, they are hardly correlated with the reaction process. Therefore, the aerobic postcombustion reaction of the aluminum-containing explosive does not affect the analysis and calculation of the peak quasistatic overpressure. As a result, given the heat value of the explosive, the peak quasistatic overpressure of the explosive can accurately be obtained.

源语言英语
文章编号6862134
期刊Shock and Vibration
2019
DOI
出版状态已出版 - 2019

指纹

探究 'Pressure load characteristics of nonideal explosives in a simulation cabin' 的科研主题。它们共同构成独一无二的指纹。

引用此