Preparation of nanocomposite PbO·CuO/CNTs via microemulsion process and its catalysis on thermal decomposition of RDX

Hui Ren*, Yang yang Liu, Qing jie Jiao, Xiao fen Fu, Ting ting Yang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

41 引用 (Scopus)

摘要

Mixture of carbon black, copper and lead was used as catalyst of high-content RDX-composite-modified double base propellant. To enhance the catalytic effect and improve the flaring performance, metal oxide deposited on carbon nanotubes (CNTs) are replaced with afore-mentioned catalyst. A new type of nano-combustion catalyst is synthesized with microemulsion process. In present work, ternary diagram was adopted to analyze the essential factors which affect microemulsion, including temperature, surfactant or cosurfactant and concentration of solution in order to find the best technical parameters and thus to control the core formation and growth of oxides on the nano-template. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are applied to characterize the products. Through observation of microstructures and analysis of crystal structure, it is confirmed that nano-oxides are deposited on the surface of carbon nanotubes. Its particle size is below 50 nm. According to propellant components, a certain amount of combustion catalyst and RDX will be mixed. PbO·CuO/CNTs can catalyze thermal decomposition of RDX by thermal analysis. The results show that the new catalysts obviously accelerate the decomposition of RDX, and the peak temperature of decomposition reduce by 14.1 °C. The catalytic effect of nano-catalyst is better than original catalyst.

源语言英语
页(从-至)149-152
页数4
期刊Journal of Physics and Chemistry of Solids
71
2
DOI
出版状态已出版 - 2月 2010

指纹

探究 'Preparation of nanocomposite PbO·CuO/CNTs via microemulsion process and its catalysis on thermal decomposition of RDX' 的科研主题。它们共同构成独一无二的指纹。

引用此