Preparation and electrochemical capacitance of binder-free different micromorphology nickel sulfide on nickel foam for asymmetric supercapacitor

Fang Tian*, Haifei Wang, Hui Li, Shuzhen Liu, Dong Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Building energy storage equipment like supercapacitors becomes particularly important because of the growth in energy consumption. The electrochemical material of supercapacitor is one of the significant constituent parts, which directly affect the performance of supercapacitors. The electrode of a supercapacitor generally consists of a base material, an active material, and a binder between the base and active materials. The use of a binder can increase the resistance of internal system. Therefore, it is very important to prepare non-adhesive electrode materials. Nickel sulfides have smaller band gap than that of transition metal oxides, high conductivity, and have been widely welcomed by researchers in recent years. In this paper, binder-free different micromorphology nickel sulfide based on nickel foam (Ni3S2/NF) was fabricated by means of electrochemical reaction method. The microtopography and specific capacitance of these Ni3S2/NF electrodes had obvious distinction at different speed rates of preparation. The diameter of the prepared Ni3S2 particles varied from more than 100 nm to more than 1000 nm. The best-performing Ni3S2/NF was prepared at the sweep speed of 800 mV s−1 in the electrochemical deposition process. The best-performing Ni3S2/NF delivered a mass-specific capacity of 1193.83 F g−1 and an area-specific capacity of 235.83 mF cm−2. The obtained capacity retention rate was 49.20% after charging and discharging 5000 times. An asymmetric supercapacitor was also constructed in order to realize the application of Ni3S2/NF. The asymmetric supercapacitor delivered an area-specific capacity of 69.67 mF cm–2 and obtained capacity retention rate of 41.25% after charging and discharging 5000 times.

源语言英语
文章编号123
期刊Journal of Nanoparticle Research
24
6
DOI
出版状态已出版 - 6月 2022
已对外发布

指纹

探究 'Preparation and electrochemical capacitance of binder-free different micromorphology nickel sulfide on nickel foam for asymmetric supercapacitor' 的科研主题。它们共同构成独一无二的指纹。

引用此