Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP

Junyong Zhu, Ningning Guo, Yatao Zhang*, Liang Yu, Jindun Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

154 引用 (Scopus)

摘要

Sodium 4-styrenesulfonate was grafted onto the surfaces of halloysite nanotubes (HNTs) via surface-initiated atom transfer radical polymerization (SI-ATRP), and then negatively charged nanofiltration (NF) membranes were fabricated by blending various contents of HNTs-poly(sodium 4-styrenesulfonate) (HNTs-poly(NASS)) composites via phase inversion method. The grafting degree was effectively controlled by varying the reaction time and the amount of monomers. The results of FT-IR, TGA, and TEM indicated that HNTs-poly (NASS) composites were successfully synthesized and GPC results exhibited the linear relationship between number-average molecular mass (Mn) and reaction time. In addition, the membranes were characterized by SEM, static water contact angle and water ratio. It was found that the hydrophilicity of hybrid membranes was significantly superior to bare PES membranes, which corresponded to the results of pure water flux and thus may enhance fouling resistance to a certain extent. The ion-exchange capacity (IEC) value could be up to 0.07. mmol/g when the HNTs-poly (NASS) content was only 3. wt%. Meanwhile, the pure water flux of the hybrid membranes increased with increasing the HNTs-poly (NASS) content. The permeation ratio for saline solution increased significantly, such as P(MgCl2) from 77% to 96.5%. From the analysis above, these prepared hybrid membranes have a potential application in desalination of textile industry and wastewater treatment.

源语言英语
页(从-至)91-99
页数9
期刊Journal of Membrane Science
465
DOI
出版状态已出版 - 2014
已对外发布

指纹

探究 'Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP' 的科研主题。它们共同构成独一无二的指纹。

引用此