Prediction or Comparison: Toward Interpretable Qualitative Reasoning

Mucheng Ren, Heyan Huang*, Yang Gao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Qualitative relationships illustrate how changing one property (e.g., moving velocity) affects another (e.g., kinetic energy) and constitutes a considerable portion of textual knowledge. Current approaches use either semantic parsers to transform natural language inputs into logical expressions or a “black-box” model to solve them in one step. The former has a limited application range, while the latter lacks interpretability. In this work, we categorize qualitative reasoning tasks into two types: prediction and comparison. In particular, we adopt neural network modules trained in an end-to-end manner to simulate the two reasoning processes. Experiments on two qualitative reasoning question answering datasets, QuaRTz and QuaRel, show our methods' effectiveness and generalization capability, and the intermediate outputs provided by the modules make the reasoning process interpretable.

源语言英语
主期刊名Findings of the Association for Computational Linguistics
主期刊副标题ACL-IJCNLP 2021
编辑Chengqing Zong, Fei Xia, Wenjie Li, Roberto Navigli
出版商Association for Computational Linguistics (ACL)
664-675
页数12
ISBN(电子版)9781954085541
出版状态已出版 - 2021
活动Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 - Virtual, Online
期限: 1 8月 20216 8月 2021

出版系列

姓名Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

会议

会议Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Virtual, Online
时期1/08/216/08/21

指纹

探究 'Prediction or Comparison: Toward Interpretable Qualitative Reasoning' 的科研主题。它们共同构成独一无二的指纹。

引用此