Predicting Information Diffusion Cascades Using Graph Attention Networks

Meng Wang, Kan Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Effective information cascade prediction plays a very important role in suppressing the spread of rumors in social networks and providing accurate social recommendations on social platforms. This paper improves existing models and proposes an end-to-end deep learning method called CasGAT. The method of graph attention network is designed to optimize the processing of large networks. After that, we only need to pay attention to the characteristics of neighbor nodes. Our approach greatly reduces the processing complexity of the model. We use realistic datasets to demonstrate the effectiveness of the model and compare the improved model with three baselines. Extensive results demonstrate that our model outperformed the three baselines in the prediction accuracy.

源语言英语
主期刊名Neural Information Processing - 27th International Conference, ICONIP 2020, Proceedings
编辑Haiqin Yang, Kitsuchart Pasupa, Andrew Chi-Sing Leung, James T. Kwok, Jonathan H. Chan, Irwin King
出版商Springer Science and Business Media Deutschland GmbH
104-112
页数9
ISBN(印刷版)9783030638191
DOI
出版状态已出版 - 2020
活动27th International Conference on Neural Information Processing, ICONIP 2020 - Bangkok, 泰国
期限: 18 11月 202022 11月 2020

出版系列

姓名Communications in Computer and Information Science
1332
ISSN(印刷版)1865-0929
ISSN(电子版)1865-0937

会议

会议27th International Conference on Neural Information Processing, ICONIP 2020
国家/地区泰国
Bangkok
时期18/11/2022/11/20

指纹

探究 'Predicting Information Diffusion Cascades Using Graph Attention Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此