Portable coherent Doppler light detection and ranging for boundary-layer wind sensing

Xunbao Rui, Pan Guo*, He Chen, Siying Chen, Yinchao Zhang, Meng Zhao, Yanwei Wu, Peitao Zhao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

We present the performance of the portable wind light detection and ranging (LIDAR) system based on the 1.55-μm all-fiber technology in the atmospheric boundary layer. The LIDAR is 23.9 kg in weight, 50 cm in height, 35 cm in width, and 27 cm in depth, and the system's local oscillator (LO) light power, pulse energy, and pulse width are adjustable. The LO light power is optimized to 3 mW, to minimize the effect of the relative intensity noise. The transmitting pulse energy is reduced to 19 μJ, to minimize the system's power consumption while covering a detection height of >1 km in clear-sky condition. The pulse width is variable from 100 to 400 ns corresponding to a minimum resolution from 15 to 60 m. The signal-to-noise ratio performance experiment shows that this system can detect as high as 2.1 km. Field experiments compared with radiosonde and anemometer show that this system presents a detection accuracy of better than 1 m / s and 10 deg.

源语言英语
文章编号034105
期刊Optical Engineering
58
3
DOI
出版状态已出版 - 1 3月 2019

指纹

探究 'Portable coherent Doppler light detection and ranging for boundary-layer wind sensing' 的科研主题。它们共同构成独一无二的指纹。

引用此