TY - JOUR
T1 - Polaron effects on the performance of light-harvesting systems
T2 - A quantum heat engine perspective
AU - Xu, Dazhi
AU - Wang, Chen
AU - Zhao, Yang
AU - Cao, Jianshu
N1 - Publisher Copyright:
© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
PY - 2016/1/28
Y1 - 2016/1/28
N2 - We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
AB - We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
KW - heat engine
KW - quantum open system
KW - strong coupling
UR - http://www.scopus.com/inward/record.url?scp=84960172735&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/18/2/023003
DO - 10.1088/1367-2630/18/2/023003
M3 - Article
AN - SCOPUS:84960172735
SN - 1367-2630
VL - 18
JO - New Journal of Physics
JF - New Journal of Physics
IS - 2
M1 - 023003
ER -