Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective

Dazhi Xu, Chen Wang, Yang Zhao, Jianshu Cao

科研成果: 期刊稿件文章同行评审

57 引用 (Scopus)

摘要

We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

源语言英语
文章编号023003
期刊New Journal of Physics
18
2
DOI
出版状态已出版 - 28 1月 2016
已对外发布

指纹

探究 'Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective' 的科研主题。它们共同构成独一无二的指纹。

引用此