Polarimetric HRRP recognition based on feature-guided Transformer model

Liang Zhang, Chang Han, Yanhua Wang*, Yang Li, Teng Long

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

Polarimetric high-resolution range profile (HRRP) holds great potential for radar automatic target recognition (RATR) owing to its capability of providing both polarimetric and spatial scattering information. In recent years, deep learning (DL) has obtained state-of-the-art results in many classification tasks and has drawn great attention in the RATR field. However, as one of the most challenging tasks in RATR, small training sample case will restrict the application of DL because its superior performance generally depends on a large number of training samples. A feature-guided deep model based on Transformer framework is proposed for polarimetric HRRP recognition with limited training samples. In the proposed model, artificial features are introduced to the attention module to guide the model focus on the range cells of HRRP with more target scattering information so as to reduce the dependence of the model on the number of training samples. Several different approaches are also studied to measure the similarity between artificial features and HRRP data to further improve the learning capacity of the model. Experimental results demonstrate that the proposed feature-guided Transformer model modifying by Cosine similarity measure is able to achieve a better performance for polarimetric HRRP recognition with limited training samples.

源语言英语
页(从-至)705-707
页数3
期刊Electronics Letters
57
18
DOI
出版状态已出版 - 8月 2021

指纹

探究 'Polarimetric HRRP recognition based on feature-guided Transformer model' 的科研主题。它们共同构成独一无二的指纹。

引用此