Poincaré-cartan integral variants and invariants of nonholonomic constrained systems

Y. X. Guo*, M. Shang, S. K. Luo, F. X. Mei

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

Usually there does not exist an integral invariant of Poincaré-Cartan's type for a nonholonomic system because a constraint submanifold does not admit symplectic structure in general. An integral variant of Poincaré-Cartan's type, depending on the nonholonomy of the constraints and nonconservative forces acting on the system, is derived from D'Alembert-Lagrange principle. For some nonholonomic constrained mechanical systems, there exists an alternative Lagrangian which determines the symplectic structure of a constraint submanifold. The integral invariants can then be constructed for such systems.

源语言英语
页(从-至)1197-1205
页数9
期刊International Journal of Theoretical Physics
40
6
DOI
出版状态已出版 - 2001

指纹

探究 'Poincaré-cartan integral variants and invariants of nonholonomic constrained systems' 的科研主题。它们共同构成独一无二的指纹。

引用此