Physics-informed Deep Learning to Solve Electromagnetic Scattering Problems

Ji Yuan Wang*, Yuzhao Li, Bo Wen Xue, Xiao Min Pan

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A physical-informed neural network (PINN) is employed to solve electromagnetic scattering problems which can map the incident field to scattered field directly. Numerical simulations on 2D electromagnetic scattering problems are carried out to validate the performance of PINN.

源语言英语
主期刊名2022 IEEE Conference on Antenna Measurements and Applications, CAMA 2022
出版商Institute of Electrical and Electronics Engineers
ISBN(电子版)9781665490375
DOI
出版状态已出版 - 2022
活动2022 IEEE Conference on Antenna Measurements and Applications, CAMA 2022 - Guangzhou, 中国
期限: 14 12月 202217 12月 2022

出版系列

姓名IEEE Conference on Antenna Measurements and Applications, CAMA
2022-December
ISSN(印刷版)2474-1760
ISSN(电子版)2643-6795

会议

会议2022 IEEE Conference on Antenna Measurements and Applications, CAMA 2022
国家/地区中国
Guangzhou
时期14/12/2217/12/22

指纹

探究 'Physics-informed Deep Learning to Solve Electromagnetic Scattering Problems' 的科研主题。它们共同构成独一无二的指纹。

引用此