Photovoltaic array fault diagnosis based on gaussian kernel fuzzy C-means clustering algorithm

Shengyang Liu, Lei Dong*, Xiaozhong Liao, Xiaodong Cao, Xiaoxiao Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

In the fault diagnosis process of a photovoltaic (PV) array, it is difficult to discriminate single faults and compound faults with similar signatures. Furthermore, the data collected in the actual field experiment also contains strong noise, which leads to the decline of diagnostic accuracy. In order to solve these problems, a new eigenvector composed of the normalized PV voltage, the normalized PV current and the fill factor is constructed and proposed to characterize the common faults, such as open circuit, short circuit and compound faults in the PV array. The combination of these three feature characteristics can reduce the interference of external meteorological conditions in the fault identification. In order to obtain the new eigenvectors, a multi-sensory system for fault diagnosis in a PV array, combined with a data-mining solution for the classification of the operational state of the PV array, is needed. The selected sensors are temperature sensors, irradiance sensors, voltage sensors and current sensors. Taking account of the complexity of the fault data in the PV array, the Kernel Fuzzy C-means clustering method is adopted to identify these fault types. Gaussian Kernel Fuzzy C-means clustering method (GKFCM) shows good clustering performance for classifying the complex datasets, thus the classification accuracy can be effectively improved in the recognition process. This algorithm is divided into the training and testing phases. In the training phase, the feature vectors of 8 different fault types are clustered to obtain the training core points. According to the minimum Euclidean Distances between the training core points and new fault data, the new fault datasets can be identified into the corresponding classes in the fault classification stage. This strategy can not only diagnose single faults, but also identify compound fault conditions. Finally, the simulation and field experiment demonstrated that the algorithm can effectively diagnose the 8 common faults in photovoltaic arrays.

源语言英语
文章编号1520
期刊Sensors
19
7
DOI
出版状态已出版 - 1 4月 2019

指纹

探究 'Photovoltaic array fault diagnosis based on gaussian kernel fuzzy C-means clustering algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此