摘要
Whispering gallery mode (WGM) photonic thermometer had achieved ultra-high sensitivity and resolution. However, while pursuing extremely high quality factor and thereafter high precision, power-induced self-heating within microcavity can bring a significant systematic error. We propose a photonic sensor with less than milli-kelvin self-heating effect utilizing silicon nitride (Si3N4) microring resonator with a loaded quality factor of 4.75 × 105. By investigating thermal broadening transmission spectra under various probing powers, effective absorption coefficient and thermal relaxation constant of the device were obtained where thermo-refractive and Kerr effect were accounted. Self-heating temperature rise was predicted to be mitigated to 245 μK under a proposed measurement condition, and this ultra-low self-heating effect was experimentally proved. The proposed approach can be used to establish metrological standards for photonic thermometry and various sensing applications.
源语言 | 英语 |
---|---|
文章编号 | 110494 |
期刊 | Measurement: Journal of the International Measurement Confederation |
卷 | 188 |
DOI | |
出版状态 | 已出版 - 1月 2022 |