TY - JOUR
T1 - Pharmacophore modeling and 3D-QSAR study for the design of novel α-synuclein aggregation inhibitors
AU - Yang, Jixia
AU - Hu, Jiajing
AU - Zhang, Gongzheng
AU - Qin, Li
AU - Wen, Hongliang
AU - Tang, Yun
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/9
Y1 - 2021/9
N2 - Alpha-synuclein (α-syn), as a highly soluble presynaptic protein expressed in the brain, plays an important role in recycling synaptic vesicles and regulating the synthesis, storage, and release of neurotransmitters. Accumulation of α-syn in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson’s disease (PD), so inhibition of α-syn aggregation may provide a novel approach for treating PD. In this study, the 3D structure of α-syn was downloaded from Protein Data Bank (PDB ID: 2N0A). A ligand-based pharmacophore model was conducted on a set of 43 diverse α-syn ligands, and the results suggested that two hydrogen-bond acceptors, one hydrophobic group, and two aromatic rings were significant to the inhibition of α-syn aggregation. A ligand-based 3D-QSAR model was also established with good statistical significance (R2 = 0.920) and excellent predictive ability (Q2 = 0.752). Novel indolinone derivatives were designed and synthesized based on the pharmacophore model. Subsequently, the 3D-QSAR model was used to predict the inhibitory activities towards α-syn aggregation, and the actual inhibitory activities were evaluated by thioflavin-T assay in vitro with the best inhibitory activity reaching 45.08%. The fitting results indicated that the built pharmacophore and 3D-QSAR models provided better reliability and accuracy for compound modification and prediction of the activity thereof. Graphical abstract: A ligand-based pharmacophore modeling and 3D-QSAR study have been performed on a set of 43 diverse ligands for α-synuclein for the first time. Based on the best pharmacophore modeling, novel indolinone derivatives were designed and synthesized, and the inhibitory activities for α-synuclein aggregation were evaluated by thioflavin-T assay in vitro, which preliminary indicated that five pharmacophore sites (two hydrogen bond acceptors (A), a hydrophobic group (H), and two aromatic rings (R)) in compounds contribute to the inhibitory activities. In the study, the built pharmacophore modeling and 3D-QSAR provided better reliability and accuracy for compound modification and prediction of the activity thereof. [Figure not available: see fulltext.]
AB - Alpha-synuclein (α-syn), as a highly soluble presynaptic protein expressed in the brain, plays an important role in recycling synaptic vesicles and regulating the synthesis, storage, and release of neurotransmitters. Accumulation of α-syn in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson’s disease (PD), so inhibition of α-syn aggregation may provide a novel approach for treating PD. In this study, the 3D structure of α-syn was downloaded from Protein Data Bank (PDB ID: 2N0A). A ligand-based pharmacophore model was conducted on a set of 43 diverse α-syn ligands, and the results suggested that two hydrogen-bond acceptors, one hydrophobic group, and two aromatic rings were significant to the inhibition of α-syn aggregation. A ligand-based 3D-QSAR model was also established with good statistical significance (R2 = 0.920) and excellent predictive ability (Q2 = 0.752). Novel indolinone derivatives were designed and synthesized based on the pharmacophore model. Subsequently, the 3D-QSAR model was used to predict the inhibitory activities towards α-syn aggregation, and the actual inhibitory activities were evaluated by thioflavin-T assay in vitro with the best inhibitory activity reaching 45.08%. The fitting results indicated that the built pharmacophore and 3D-QSAR models provided better reliability and accuracy for compound modification and prediction of the activity thereof. Graphical abstract: A ligand-based pharmacophore modeling and 3D-QSAR study have been performed on a set of 43 diverse ligands for α-synuclein for the first time. Based on the best pharmacophore modeling, novel indolinone derivatives were designed and synthesized, and the inhibitory activities for α-synuclein aggregation were evaluated by thioflavin-T assay in vitro, which preliminary indicated that five pharmacophore sites (two hydrogen bond acceptors (A), a hydrophobic group (H), and two aromatic rings (R)) in compounds contribute to the inhibitory activities. In the study, the built pharmacophore modeling and 3D-QSAR provided better reliability and accuracy for compound modification and prediction of the activity thereof. [Figure not available: see fulltext.]
KW - 3D-QSAR
KW - Alpha-synuclein
KW - Indolinone
KW - Parkinson’s disease
KW - Pharmacophore
UR - http://www.scopus.com/inward/record.url?scp=85113370067&partnerID=8YFLogxK
U2 - 10.1007/s00894-021-04881-3
DO - 10.1007/s00894-021-04881-3
M3 - Article
C2 - 34432157
AN - SCOPUS:85113370067
SN - 1610-2940
VL - 27
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 9
M1 - 260
ER -