Person-similarity weighted feature for expression recognition

Huachun Tan*, Yu Jin Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 5
see details

摘要

In this paper, a new method to extract person-independent expression feature based on HOSVD (Higher-Order Singular Value Decomposition) is proposed for facial expression recognition. With the assumption that similar persons have similar facial expression appearance and shape, person-similarity weighted expression feature is used to estimate the expression feature of the test person. As a result, the estimated expression feature can reduce the influence of individual caused by insufficient training data and becomes less person-dependent, and can be more robust to new persons. The proposed method has been tested on Cohn-Kanade facial expression database and Japanese Female Facial Expression (JAFFE) database. Person-independent experimental results show the efficiency of the proposed method.

源语言英语
主期刊名Computer Vision - ACCV 2007 - 8th Asian Conference on Computer Vision, Proceedings
出版商Springer Verlag
712-721
页数10
版本PART 2
ISBN(印刷版)9783540763895
DOI
出版状态已出版 - 2007
活动8th Asian Conference on Computer Vision, ACCV 2007 - Tokyo, 日本
期限: 18 11月 200722 11月 2007

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
编号PART 2
4844 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议8th Asian Conference on Computer Vision, ACCV 2007
国家/地区日本
Tokyo
时期18/11/0722/11/07

指纹

探究 'Person-similarity weighted feature for expression recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此

Tan, H., & Zhang, Y. J. (2007). Person-similarity weighted feature for expression recognition. 在 Computer Vision - ACCV 2007 - 8th Asian Conference on Computer Vision, Proceedings (PART 2 编辑, 页码 712-721). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 4844 LNCS, 号码 PART 2). Springer Verlag. https://doi.org/10.1007/978-3-540-76390-1_70