PERIODIC HOMOGENIZATION OF NONSYMMETRIC LÉVY-TYPE PROCESSES

Xin Chen*, Zhen Qing Chen, Takashi Kumagai, Jian Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

In this paper we study homogenization problem for strong Markov processes on ℝd having infinitesimal gener (formula presented) in periodic media, where Π is a nonnegative measure on d that does not charge the origin 0, satisfies (formula presented) and can be singular with respect to the Lebesgue measure on ℝd. Under a proper scaling we show the scaled processes converge weakly to Lévy processes on ℝd. The results are a counterpart of the celebrated work (Asymptotic Analysis for Periodic Structures (1978) North-Holland; Ann. Probab. 13 (1985) 385–396) in the jump-diffusion setting. In particular, we completely characterize the homogenized limiting processes when b(x) is a bounded continuous multivariate 1-periodic ℝd -valued function, k(x,z) is a nonnegative bounded continuous function that is multivariate 1-periodic in both x and z variables and, in spherical coordinate (formula presented) (formula presented) with (formula presented) and e0 being any finite measure on the unit sphere (formula presented) in Rd. Different phenomena occur depending on the values of α; there are five cases: α ∈(0, 1), α = 1, α ∈ (1, 2), α = 2 and α ∈ (2,∞).

源语言英语
页(从-至)2874-2921
页数48
期刊Annals of Probability
49
6
DOI
出版状态已出版 - 2021
已对外发布

指纹

探究 'PERIODIC HOMOGENIZATION OF NONSYMMETRIC LÉVY-TYPE PROCESSES' 的科研主题。它们共同构成独一无二的指纹。

引用此