TY - JOUR
T1 - Performance and adsorption mechanism of a magnetic calcium silicate hydrate composite for phosphate removal and recovery
AU - Peng, Lihong
AU - Dai, Hongliang
AU - Wu, Yifeng
AU - Dai, Zheqin
AU - Li, Xiang
AU - Lu, Xiwu
N1 - Publisher Copyright:
© IWA Publishing 2017.
PY - 2017
Y1 - 2017
N2 - A novel magnetic calcium silicate hydrate composite (Fe 3 O 4 @CSH) was proposed for phosphorus (P) removal and recovery from a synthetic phosphate solution, facilitated by a magnetic separation technique. The Fe 3 O 4 @CSH material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta-potential and magnetic curves. The chemical composition and structure of Fe 3 O 4 @CSH and the successful surface loading of hydroxyl functional groups were confirmed. Phosphate adsorption kinetics, isotherm, and thermodynamic experiments showed that adsorption reaches equilibrium at 24 h, with a maximum adsorption capacity of 55.84 mg P/g under optimized experimental conditions. Adsorption kinetics fitted well to the pseudo second-order model, and equilibrium data fit the Freundlich isotherm model. Thermodynamic analysis provided a positive value for ΔH (129.84 KJ/mol) and confirmed that phosphate adsorption on these materials is endothermic. The P-laden Fe 3 O 4 @CSH materials could be rapidly separated from aqueous solution by a magnetic separation technique within 1 min. A removal rate of more than 60% was still obtained after eight adsorption/desorption cycles, demonstrating the excellent reusability of the particles. The results demonstrated that the Fe 3 O 4 @CSH materials had high P-adsorption efficiency and were reusable.
AB - A novel magnetic calcium silicate hydrate composite (Fe 3 O 4 @CSH) was proposed for phosphorus (P) removal and recovery from a synthetic phosphate solution, facilitated by a magnetic separation technique. The Fe 3 O 4 @CSH material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta-potential and magnetic curves. The chemical composition and structure of Fe 3 O 4 @CSH and the successful surface loading of hydroxyl functional groups were confirmed. Phosphate adsorption kinetics, isotherm, and thermodynamic experiments showed that adsorption reaches equilibrium at 24 h, with a maximum adsorption capacity of 55.84 mg P/g under optimized experimental conditions. Adsorption kinetics fitted well to the pseudo second-order model, and equilibrium data fit the Freundlich isotherm model. Thermodynamic analysis provided a positive value for ΔH (129.84 KJ/mol) and confirmed that phosphate adsorption on these materials is endothermic. The P-laden Fe 3 O 4 @CSH materials could be rapidly separated from aqueous solution by a magnetic separation technique within 1 min. A removal rate of more than 60% was still obtained after eight adsorption/desorption cycles, demonstrating the excellent reusability of the particles. The results demonstrated that the Fe 3 O 4 @CSH materials had high P-adsorption efficiency and were reusable.
KW - Adsorption
KW - Calcium silicate hydrate
KW - Magnetic nanoparticles
KW - Magnetic separation
KW - Phosphorus recovery
UR - http://www.scopus.com/inward/record.url?scp=85050855059&partnerID=8YFLogxK
U2 - 10.2166/wst.2018.184
DO - 10.2166/wst.2018.184
M3 - Article
C2 - 29851411
AN - SCOPUS:85050855059
SN - 0273-1223
VL - 2017
SP - 578
EP - 591
JO - Water Science and Technology
JF - Water Science and Technology
IS - 2
ER -