PCA-Based appearance template learning for contour tracking

Bo Ma, Hongwei Hu, Pei Li, Yin Han

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A novel method is proposed in this paper to model changes of object appearance for object contour tracking. Principal component analysis is utilized to learn eigenvectors from a set of the object appearance in our work, and then the current object appearance can be reconstructed by a linear combination of the eigenvectors. To extract the object contour, we perform covariance matching under the variational level set framework. The proposed method is tested on several sequences under large variations, and demonstrates that it outperforms current methods without updating the appearance template.

源语言英语
主期刊名Neural Information Processing - 20th International Conference, ICONIP 2013, Proceedings
493-500
页数8
版本PART 3
DOI
出版状态已出版 - 2013
活动20th International Conference on Neural Information Processing, ICONIP 2013 - Daegu, 韩国
期限: 3 11月 20137 11月 2013

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
编号PART 3
8228 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议20th International Conference on Neural Information Processing, ICONIP 2013
国家/地区韩国
Daegu
时期3/11/137/11/13

指纹

探究 'PCA-Based appearance template learning for contour tracking' 的科研主题。它们共同构成独一无二的指纹。

引用此