TY - GEN
T1 - Parsing video events with goal inference and intent prediction
AU - Pei, Mingtao
AU - Jia, Yunde
AU - Zhu, Song Chun
PY - 2011
Y1 - 2011
N2 - In this paper, we present an event parsing algorithm based on Stochastic Context Sensitive Grammar (SCSG) for understanding events, inferring the goal of agents, and predicting their plausible intended actions. The SCSG represents the hierarchical compositions of events and the temporal relations between the sub-events. The alphabets of the SCSG are atomic actions which are defined by the poses of agents and their interactions with objects in the scene. The temporal relations are used to distinguish events with similar structures, interpolate missing portions of events, and are learned from the training data. In comparison with existing methods, our paper makes the following contributions. i) We define atomic actions by a set of relations based on the fluents of agents and their interactions with objects in the scene. ii) Our algorithm handles events insertion and multi-agent events, keeps all possible interpretations of the video to preserve the ambiguities, and achieves the globally optimal parsing solution in a Bayesian framework; iii) The algorithm infers the goal of the agents and predicts their intents by a top-down process; iv) The algorithm improves the detection of atomic actions by event contexts. We show satisfactory results of event recognition and atomic action detection on the data set we captured which contains 12 event categories in both indoor and outdoor videos.
AB - In this paper, we present an event parsing algorithm based on Stochastic Context Sensitive Grammar (SCSG) for understanding events, inferring the goal of agents, and predicting their plausible intended actions. The SCSG represents the hierarchical compositions of events and the temporal relations between the sub-events. The alphabets of the SCSG are atomic actions which are defined by the poses of agents and their interactions with objects in the scene. The temporal relations are used to distinguish events with similar structures, interpolate missing portions of events, and are learned from the training data. In comparison with existing methods, our paper makes the following contributions. i) We define atomic actions by a set of relations based on the fluents of agents and their interactions with objects in the scene. ii) Our algorithm handles events insertion and multi-agent events, keeps all possible interpretations of the video to preserve the ambiguities, and achieves the globally optimal parsing solution in a Bayesian framework; iii) The algorithm infers the goal of the agents and predicts their intents by a top-down process; iv) The algorithm improves the detection of atomic actions by event contexts. We show satisfactory results of event recognition and atomic action detection on the data set we captured which contains 12 event categories in both indoor and outdoor videos.
UR - http://www.scopus.com/inward/record.url?scp=84856646751&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2011.6126279
DO - 10.1109/ICCV.2011.6126279
M3 - Conference contribution
AN - SCOPUS:84856646751
SN - 9781457711015
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 487
EP - 494
BT - 2011 International Conference on Computer Vision, ICCV 2011
T2 - 2011 IEEE International Conference on Computer Vision, ICCV 2011
Y2 - 6 November 2011 through 13 November 2011
ER -