Parameter Optimization of Sparse Fourier Transform for Radar Target Detection

Hongchi Zhang, Tao Shan, Shengheng Liu, Ran Tao

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

The sparse Fourier transform (SFT) can dramatically accelerate the spectral analyses by leveraging the inherit sparsity in radar echoes. However, a satisfactory accuracy-complexity trade-off commonly requires sophisticated empirical parameter tuning. In this context, this work attempts to enhance SFT by optimizing the parameter selection mechanism. We first derive closed-form expressions of two performance metrics with respect to the detection and false-alarm rates. On top of this, a parameter optimization algorithm is designed. The proposed scheme is able to automatically arrive at a optimized parameter settings considering the a priori knowledge and the performance requirements, which is confirmed by numerical simulations.

源语言英语
主期刊名2020 IEEE Radar Conference, RadarConf 2020
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728189420
DOI
出版状态已出版 - 21 9月 2020
活动2020 IEEE Radar Conference, RadarConf 2020 - Florence, 意大利
期限: 21 9月 202025 9月 2020

出版系列

姓名IEEE National Radar Conference - Proceedings
2020-September
ISSN(印刷版)1097-5659

会议

会议2020 IEEE Radar Conference, RadarConf 2020
国家/地区意大利
Florence
时期21/09/2025/09/20

指纹

探究 'Parameter Optimization of Sparse Fourier Transform for Radar Target Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此