Orbital angular momentum (OAM) recognition with generative adversarial network (GAN) based atmospheric modeling

Chenda Lu, Qinghua Tian*, Xiangjun Xin, Lei Zhu, Qi Zhang, Haipeng Yao, Huan Chang, Ran Gao

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

摘要

We proposed a Generative Adversarial Network (GAN) based atmospheric modeling method which helps with the Orbital angular momentum (OAM) recognition to achieve better accuracy with limited data.

源语言英语
期刊Optics InfoBase Conference Papers
出版状态已出版 - 2021
活动Optical Fiber Communication Conference, OFC 2021 - Virtual, Online, 美国
期限: 6 6月 202111 6月 2021

指纹

探究 'Orbital angular momentum (OAM) recognition with generative adversarial network (GAN) based atmospheric modeling' 的科研主题。它们共同构成独一无二的指纹。

引用此