TY - GEN
T1 - Optimized linear physical-layer network coding of full-rate full-diversity in MIMO two-way relay networks
AU - Shi, Long
AU - Yang, Tao
AU - Xia, Xiang Gen
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/28
Y1 - 2017/7/28
N2 - In multiple-input multiple-output (MIMO) two-way relay networks (TWRN), linear physical-layer network coding (LPNC) was proposed to boost the throughput by using spatial multiplexing at source nodes. How to design optimal LPNC for full-rate full-diversity MIMO TWRN is still an open problem. In this paper, we propose a full-rate full-diversity (FRFD) LPNC scheme. In this scheme, two source nodes, each with two antennas, transmit full-rate universal space-time codes to a two-antenna relay simultaneously. Then, the relay applies LPNC to compute multiple network-coded (NC) messages. In particular, we explicitly solve the optimal LPNC mapping to minimize decoding errors of NC messages in the FRFD LPNC scheme. Our analytical results verify that the optimal FRFD LPNC scheme guarantees the full-diversity and full-rate transmission at the same time. Simulation results are consistent with the analytical results and further demonstrate that our optimal FRFD LPNC scheme outperforms the conventional MIMO LPNC scheme.
AB - In multiple-input multiple-output (MIMO) two-way relay networks (TWRN), linear physical-layer network coding (LPNC) was proposed to boost the throughput by using spatial multiplexing at source nodes. How to design optimal LPNC for full-rate full-diversity MIMO TWRN is still an open problem. In this paper, we propose a full-rate full-diversity (FRFD) LPNC scheme. In this scheme, two source nodes, each with two antennas, transmit full-rate universal space-time codes to a two-antenna relay simultaneously. Then, the relay applies LPNC to compute multiple network-coded (NC) messages. In particular, we explicitly solve the optimal LPNC mapping to minimize decoding errors of NC messages in the FRFD LPNC scheme. Our analytical results verify that the optimal FRFD LPNC scheme guarantees the full-diversity and full-rate transmission at the same time. Simulation results are consistent with the analytical results and further demonstrate that our optimal FRFD LPNC scheme outperforms the conventional MIMO LPNC scheme.
UR - http://www.scopus.com/inward/record.url?scp=85028316456&partnerID=8YFLogxK
U2 - 10.1109/ICC.2017.7997267
DO - 10.1109/ICC.2017.7997267
M3 - Conference contribution
AN - SCOPUS:85028316456
T3 - IEEE International Conference on Communications
BT - 2017 IEEE International Conference on Communications, ICC 2017
A2 - Debbah, Merouane
A2 - Gesbert, David
A2 - Mellouk, Abdelhamid
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Conference on Communications, ICC 2017
Y2 - 21 May 2017 through 25 May 2017
ER -