Optimal Tracking Control for Robotic Manipulator using Actor-Critic Network

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper proposed an optimal control scheme based on the actor-critic neural network(NN) for the complex mechanical manipulator system with dynamic disturbance. The actor's goal is to optimize control behavior, while the critic's goal is to evaluate control performance. The optimal control update law in the scheme can guarantee the system error and the weight estimation error SGUUB, and its stability and convergence are proved based on the direct Lyapunov method. Finally, the connecting rods on two degrees of freedom are tested to verify the effectiveness of the proposed optimal control scheme.

源语言英语
主期刊名Proceedings of the 40th Chinese Control Conference, CCC 2021
编辑Chen Peng, Jian Sun
出版商IEEE Computer Society
1556-1561
页数6
ISBN(电子版)9789881563804
DOI
出版状态已出版 - 26 7月 2021
活动40th Chinese Control Conference, CCC 2021 - Shanghai, 中国
期限: 26 7月 202128 7月 2021

出版系列

姓名Chinese Control Conference, CCC
2021-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议40th Chinese Control Conference, CCC 2021
国家/地区中国
Shanghai
时期26/07/2128/07/21

指纹

探究 'Optimal Tracking Control for Robotic Manipulator using Actor-Critic Network' 的科研主题。它们共同构成独一无二的指纹。

引用此

Hu, Y., Cui, L., & Chai, S. (2021). Optimal Tracking Control for Robotic Manipulator using Actor-Critic Network. 在 C. Peng, & J. Sun (编辑), Proceedings of the 40th Chinese Control Conference, CCC 2021 (页码 1556-1561). (Chinese Control Conference, CCC; 卷 2021-July). IEEE Computer Society. https://doi.org/10.23919/CCC52363.2021.9549419