TY - JOUR
T1 - Optimal land-use management for surface source water protection under uncertainty
T2 - A case study of songhuaba watershed (Southwestern China)
AU - Liu, Yong
AU - Yu, Yajuan
AU - Guo, Huaicheng
AU - Yang, Pingjian
PY - 2009
Y1 - 2009
N2 - The water supply to Chinese cities is increasingly degrading from pollution due to watershed activities. Consequently, water source protection requires urgent action using optimal land-use management efforts. An inexact linear programming model for optimal land-use management of surface water source area was developed. The model was proposed to balance the economic benefits of land-use development and water source protection. The maximum net economic benefit (NEB) was chosen as the objective of land-use management. The total environmental capacity (TEC) of rivers and the minimum water supply (MWS) were considered key constraints. Other constraints included forest coverage, government requirements concerning the proportions of various land-use types, soil loss, slope lands, and technical constraints. A case study was conducted for the Songhuaba Watershed, a reservoir supplying water to Kunming City, the third largest city in southwestern China. A 15-year (2006 to 2020) optimal model for land-use management was developed to better protect this water source and to gain maximum benefits from development. Ten constraints were involved in the optimal model, and results indicated that NEB ranged between 893 and 1,459 million US$. The proposed model will allow local authorities to better understand and address complex land-use systems and to develop optimal land-use management strategies for balancing source water protection and local economic development.
AB - The water supply to Chinese cities is increasingly degrading from pollution due to watershed activities. Consequently, water source protection requires urgent action using optimal land-use management efforts. An inexact linear programming model for optimal land-use management of surface water source area was developed. The model was proposed to balance the economic benefits of land-use development and water source protection. The maximum net economic benefit (NEB) was chosen as the objective of land-use management. The total environmental capacity (TEC) of rivers and the minimum water supply (MWS) were considered key constraints. Other constraints included forest coverage, government requirements concerning the proportions of various land-use types, soil loss, slope lands, and technical constraints. A case study was conducted for the Songhuaba Watershed, a reservoir supplying water to Kunming City, the third largest city in southwestern China. A 15-year (2006 to 2020) optimal model for land-use management was developed to better protect this water source and to gain maximum benefits from development. Ten constraints were involved in the optimal model, and results indicated that NEB ranged between 893 and 1,459 million US$. The proposed model will allow local authorities to better understand and address complex land-use systems and to develop optimal land-use management strategies for balancing source water protection and local economic development.
KW - Interval
KW - Land-use management
KW - Optimal linear programming
KW - Optimization
KW - Surface source water
KW - Uncertainty
UR - http://www.scopus.com/inward/record.url?scp=67650360979&partnerID=8YFLogxK
U2 - 10.1007/s11269-008-9370-5
DO - 10.1007/s11269-008-9370-5
M3 - Article
AN - SCOPUS:67650360979
SN - 0920-4741
VL - 23
SP - 2069
EP - 2083
JO - Water Resources Management
JF - Water Resources Management
IS - 10
ER -