Optimal Control Method of Motor Torque Loading Based on Genetic Algorithm

Shaohua Niu, Wencai Zhang, Tianzhen Li, Gan Zhan*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper designs an automatic calibration method and system of motor torque for the problem of low loading accuracy of motor torque. The system uses genetic algorithm to optimize PID parameters and load control and measurement of the motor. The genetic algorithm is realized in the simulation platform, and the iterative operation is carried out by setting different cross probability and mutation probability parameters. The results are substituted into the motor model to analyze the response speed and anti-interference ability of the motor to the given random signal, and the optimal PID parameters are obtained as the configuration parameters of the motor torque automatic calibration system. The experimental results show that compared with the traditional motor torque calibration loading control, the accuracy of the system torque calibration error is improved and the error range is controlled within ±0.003 N · m, which verifies the effectiveness and feasibility of this method.

源语言英语
主期刊名Intelligent Robotics and Applications - 15th International Conference, ICIRA 2022, Proceedings
编辑Honghai Liu, Weihong Ren, Zhouping Yin, Lianqing Liu, Li Jiang, Guoying Gu, Xinyu Wu
出版商Springer Science and Business Media Deutschland GmbH
209-217
页数9
ISBN(印刷版)9783031138430
DOI
出版状态已出版 - 2022
活动15th International Conference on Intelligent Robotics and Applications, ICIRA 2022 - Harbin, 中国
期限: 1 8月 20223 8月 2022

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13455 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议15th International Conference on Intelligent Robotics and Applications, ICIRA 2022
国家/地区中国
Harbin
时期1/08/223/08/22

指纹

探究 'Optimal Control Method of Motor Torque Loading Based on Genetic Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此