Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges

Jiahua Duan, Runkun Chen, Yuan Cheng, Tianzhong Yang, Feng Zhai, Qing Dai*, Jianing Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators.

源语言英语
文章编号1800367
期刊Advanced Materials
30
22
DOI
出版状态已出版 - 29 5月 2018
已对外发布

指纹

探究 'Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges' 的科研主题。它们共同构成独一无二的指纹。

引用此