Open domain event extraction using neural latent variable models

Xiao Liu, Heyan Huang, Yue Zhang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

40 引用 (Scopus)

摘要

We consider open domain event extraction, the task of extracting unconstraint types of events from news clusters. A novel latent variable neural model is constructed, which is scalable to very large corpus. A dataset is collected and manually annotated, with task-specific evaluation metrics being designed. Results show that the proposed unsupervised model gives better performance compared to the state-of-the-art method for event schema induction.

源语言英语
主期刊名ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
出版商Association for Computational Linguistics (ACL)
2860-2871
页数12
ISBN(电子版)9781950737482
出版状态已出版 - 2020
活动57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 - Florence, 意大利
期限: 28 7月 20192 8月 2019

出版系列

姓名ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

会议

会议57th Annual Meeting of the Association for Computational Linguistics, ACL 2019
国家/地区意大利
Florence
时期28/07/192/08/19

指纹

探究 'Open domain event extraction using neural latent variable models' 的科研主题。它们共同构成独一无二的指纹。

引用此