Ontology driven decision support for the diagnosis of mild cognitive impairment

Xiaowei Zhang, Bin Hu*, Xu Ma, Philip Moore, Jing Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

37 引用 (Scopus)

摘要

In recent years, mild cognitive impairment (MCI) has attracted significant attention as an indicator of high risk for Alzheimer's disease (AD), and the diagnosis of MCI can alert patient to carry out appropriate strategies to prevent AD. To avoid subjectivity in diagnosis, we propose an ontology driven decision support method which is an automated procedure for diagnosing MCI through magnetic resonance imaging (MRI). In this approach, we encode specialized MRI knowledge into an ontology and construct a rule set using machine learning algorithms. Then we apply these two parts in conjunction with reasoning engine to automatically distinguish MCI patients from normal controls (NC). The rule set is trained by MRI data of 187 MCI patients and 177 normal controls selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) using C4.5 algorithm. By using a 10-fold cross validation, we prove that the performance of C4.5 with 80.2% sensitivity is better than other algorithms, such as support vector machine (SVM), Bayesian network (BN) and back propagation (BP) neural networks, and C4.5 is suitable for the construction of reasoning rules. Meanwhile, the evaluation results suggest that our approach would be useful to assist physicians efficiently in real clinical diagnosis for the disease of MCI.

源语言英语
页(从-至)781-791
页数11
期刊Computer Methods and Programs in Biomedicine
113
3
DOI
出版状态已出版 - 3月 2014
已对外发布

指纹

探究 'Ontology driven decision support for the diagnosis of mild cognitive impairment' 的科研主题。它们共同构成独一无二的指纹。

引用此